Дровяной газогенератор: как сделать для отопления дома, устройство, схема и видео

устройство и чертеж, видео монтажа

Занимаясь поисками альтернативного источника энергии, люди обратили внимание на газ, производимый при сжигании отходов древесины. Чтобы появилась возможность для его использования, были разработаны специальные установки — газогенераторы. Образование газа в них происходит за счет сжигания различных видов твердого топлива:

  • дров;
  • древесного угля;
  • опилок.

Также эти агрегаты могут работать и на других видах отходов древесины. Полученный газ может иметь и различное применение, но вне зависимости от типа установки в основу её работы положен принцип газогенератора. Какое устройство имеет газогенератор, какие процессы происходят во время его работы — об этом пойдет речь в этой статье.

Устройство газогенератора, работающего на дровах

Большинство современных моделей газогенераторов изготавливаются из листовой стали. Если говорить о самой распространенной форме корпуса этих установок, то это цилиндрическая. Отметим, что газогенератор может иметь и прямоугольный корпус. Ножки и днище привариваются к нижней части корпуса. Они обеспечивают устойчивость агрегата в процессе использования.

Важными составными частями конструкции газогенератора является бункер. Его используют для загрузки топлива внутрь установки. Он имеет цилиндрическую форму и изготавливается с использованием малоуглеродистой стали. Бункер устанавливается внутри корпуса газогенератора и надежно закреплен болтами. На кромках крышки люка, который ведет в бункер, имеется асбестовый уплотнитель или обычная прокладка.

Еще одна важная составная часть газогенератора – камера сгорания. Она располагается в нижней части бункера. При ее изготовлении чаще всего применяется жаропрочная сталь. Иногда для отделки внутренней поверхности этой камеры используется керамика. Именно в этой камере происходит сгорание твердого топлива.

Процесс крекинга смолы происходит в нижней части. Для этого там установлена горловина, выполненная из хромистой стали, которая обладает высокими жаропрочными свойствами. Прокладка располагается между корпусом газогенератора и его горловиной. В качестве прокладки обычно используется асбестовый шнур.

Фурмы, посредством которых обеспечивается подача воздуха в этих установках, располагаются в камере сгорания в её средней части. По своему виду это отверстия определенного калибра. Они имеют соединение с воздухораспределительной коробкой, которая связана с атмосферой. Жаропрочная сталь выступает материалом для изготовления фурм и распределительной коробки.

Обратный клапан присутствует на выходе воздухораспределительной коробки. Благодаря ему предотвращается выход горючего газа из газогенератора. Для повышения мощности агрегата перед этой коробкой устанавливается вентилятор. Благодаря ему также обеспечивается возможность для использования топлива высокой влажности. Работающий вентилятор обеспечивает нагнетание воздуха внутрь корпуса.

Колосниковая решетка используется для поддержания раскаленных углей. Если говорить о месте ее расположения, то в установке она находится в нижней части генератора. Прогоревшие угли, превратившиеся в золу, легко проникают через отверстия решетки в зольник. Чтобы имелась возможность для очищения колосниковой решетки от шлака, средняя часть сделана подвижной. Для поворота чугунных колосников предусмотрен специальный рычаг.

В составе корпуса газогенератора присутствуют и загрузочные люки, которые оснащены крышками, закрывающимися достаточно герметично. Верхний люк имеет уплотнение асбестовым шнуром. На креплении крышки присутствует специальный амортизатор. Он представляет собой рессору, которая приподнимает крышку при избыточном давлении внутри камеры. Два загрузочных люка располагаются и с боковой части корпуса.

  • Первый находится вверху. Основное его предназначение заключается в добавлении при использовании агрегата топлива в зону восстановления;
  • Местом расположения второго является нижняя часть корпуса, а используется он главным образом для удаления золы.

В зоне восстановления производится отбор газа. Он осуществляется через патрубок. К нему методом сварки присоединены трубы газопровода. Совсем необязательно только что произведенный газ, находящийся в горячем состоянии, выводить за пределы корпуса. Он может использоваться для подогрева или просушивания топлива в том случае, если используется твердое топливо высокой влажности. Для этого его подают в камеру загрузки. Чтобы он поступал туда, необходимо провести отводящий газопровод по кольцевой вокруг камеры, между корпусом установки и бункером.

Фильтр тонкой очистки находится за корпусом газогенератора. Своим видом он представляет несколько труб, которые заполнены фильтрующими элементами. Прежде чем попасть в этот фильтр, газ проходит через охладитель. Когда же он очищен, газ поступает в смеситель, где производится его смешивание с воздухом. И только потом смесь поступает в ДВС.

Когда в камере сгорания происходит процесс сгорания топлива, то оно окисляется воздухом, который поступает через фурмы камер из воздуха в распределительной коробке. Образовавшийся горючий газ движется в фильтр грубой очистки, где производится его очистка и последующее охлаждение. А потом он поступает в фильтр тонкой очистки, после чего попадает в смеситель. Из смесителя образовавшаяся смесь поступает в ДВС.

Типы газогенераторов

В настоящий момент различают три типа этих установок:

  • прямого процесса газогенерации;
  • обратного;
  • горизонтального.

Газогенераторы прямого процесса

Главной особенностью этого оборудования является то, что они могут работать на таких видах топлива, как полукокс и антрацит. Это топливо является небитуминозным. В плане конструкции агрегаты этого типа отличаются тем, что поступление воздуха в колосниковую решетку происходит с нижней части, а в верхней части осуществляется забор газа. Также необходимо отметить, что влага из топлива в таких установках не попадает в зону горения, поэтому она подводится туда специально. Мощность установки повышается при обогащении производимого газа водородом из воды.

Газогенераторы обратного процесса

Эти аппараты могут использовать в качестве топлива:

  • дрова;
  • древесный уголь;
  • отходы деревообработки.

У них тоже имеются свои отличия конструкции. Одним из главных является то, что в среднюю часть установки зону горения попадает воздух. Ниже этой зоны осуществляется забор газа. В большинстве таких установок отобранный газ используется для задач обогрева находящегося в бункере топлива.

Газогенераторы горизонтального процесса

Подобные установки также имеют свои отличия. В них воздух подводится сбоку, в нижнюю часть корпуса. Причем отметим, что его подача через фурмы происходит с высокой скоростью. Напротив фурмы присутствует газоотводная решетка, через которую производится отбор газа. Очень небольшой является активная зона газификация в установках этого типа. Она сосредоточена между концом фурмы и газоотводной решеткой. Такие агрегаты отличаются небольшим временем пуска, а также легкостью приспособления при смене режимов работы.

Выбор места установки

Газогенераторы могут устанавливаться:

  • в жилых помещениях;
  • в подвалах;
  • на улице.

Одной из разновидностей этого оборудования являются пеллетные котлы. Часто их установка выполняется в домах, поскольку при загрузке не возникает большого количества мусора, а топливо может спокойно храниться в непосредственной близости от котла.

Установка газогенераторов, которые работают на дровах большой длины, должна производиться на улице в непосредственной близости от места хранения топлива. В этом случае можно без больших неудобств осуществлять подвоз дров к оборудованию. Кроме этого, если котел размещен на улице, можно избавить помещение от грязи и золы.

Нержавеющая сталь используется для изготовления нижнего корпуса котла. Ее главным достоинством является то, что она не подвержена коррозионным процессам. Поэтому оборудование может служить очень долго. Кроме этого, современные модели установок имеют качественный слой теплоизоляции, что исключает влияние температуры окружающей среды на процесс производства газа. Также благодаря изолятору исключается влияние этого фактора на скорость пуска установки.

В таких агрегатах размещают систему регулирования. Она находится непосредственно под крышкой, что исключает попадание осадков, когда установка расположена на улице. Двойные стенки имеет дымовая труба. Если генератор стоит на улице, то для более удобного его подключения прокладку труб к котлу отопления выполняют по земле. Что касается самого котла, то его размещают таким образом, чтобы он не замерзал при длительных перерывах в работе.

Дровяной газогенератор своими руками

Если вам требуется газогенератор, то необязательно приобретать его в магазине. Изготовить это оборудование можно своими руками.

Материалы

Чтобы изготовить газогенератор своими руками, необходимо заранее подготовить необходимые материалы:

  • бочка;
  • трубы;
  • фильтры тонкой и грубой очистки;
  • вентилятор.

Вы можете построить своими руками как обычный газогенератор на дровах, так и пиролизный. Последний отличается тем, что в составе своей конструкции имеет две камеры сгорания. В первой происходит сгорание топлива и образуется газ. В другой сгорает газ и располагается теплообменник. Если вы хотите сделать своими руками пиролизный котел, то при работах в его конструкцию нужно установить дополнительную камеру, расположив её в верхней части корпуса. Теплообменник тоже должен находиться в верхней части установки. В некоторых случаях монтаж теплообменника производится сбоку. Также необходимо помнить о том, что вторая камера газогенератора пиролизного типа может располагаться не только сверху.

Выполняя работы по сборке дымохода, необходимо выполнять все операции в последовательности, обратной движению дыма. В этом случае на его стенках будет образовываться гораздо меньше отложений. Сам же он должен быть разборным, чтобы в случае необходимости его можно было почистить. Вокруг установки должно быть достаточно свободного пространства, поскольку в процессе работы он серьезно нагревается. После того как монтаж котла будет завершён, необходимо выбрать оптимальный режим работы, при котором будут сгорать все смолы.

Заключение

В настоящее время для отопления жилищ используют различные установки. Одно из новых решений — газогенератор на дровах. Он позволяет обеспечить теплую атмосферу в жилище при минимальных затратах. Приобрести газогенератор можно в любом магазине. А можно сделать своими руками. Доступные материалы, применяемые при его создании, обойдутся недорого. Технология его изготовления достаточно простая. Когда аппарат будет изготовлен и правильно установлен, вы можете, сжигая в нем дрова, получать газ, за счет которого будет обогреваться ваш дом. Кроме того, изготовленный газогенератор своими руками можно использовать в качестве утилизатора и сжигать в нем различные виды отходов –пластиковые бутылки, линолеум.

Оцените статью: Поделитесь с друзьями!

Газогенератор на дровах – принцип работы и устройство

Газ, который мы часто используем для приготовления пищи, отопления дома и нагрева воды для хозяйственных нужд, добывается не только из недр земли. Его можно получить, сжигая некоторые природные материалы, к примеру, древесину, опилки, уголь, торф, отходы сельского хозяйства и прочее. Даже некоторые виды мусора пригодны для этого дела (старый паркет, линолеум некоторые виды пластика). Ведь при сгорании вышеуказанных материалов выделяется газ, который, если смешать в определенных пропорциях с кислородом, прекрасно горит и выделяет относительно большое количество тепловой энергии. Только для этого вам придется приобрести специальный вид отопительного оборудования – газогенератор на дровах.

Принцип работы

Итак, чтобы дрова в топке смогли выделить необходимое количество горючего газа, необходимо, чтобы они горели при небольшой подаче кислорода. По сути, топливо должно не гореть, а тлеть. Но при этом температура внутри камеры должна быть немаленькой, не меньше +1100°С. Это одно из основных условий.

С газами такой температуры работать очень сложно, ведь их качество достаточно низкое, чтобы использовать его по прямому назначению. Просто коэффициент полезного действия от их сжигания будет не очень большим, поэтому топочные газы обычно очищают. Но перед этим их необходимо немного охладить.

Горизонтальная модель газогенератора

Чистка газов производится на специальных фильтрах, где их очищают от золы, взвешенных частиц, кислот (муравьиной и уксусной) и других примесей. После чего они поступает в смесительную емкость, где производится смешение газов со свежим воздухом. И вот уже готовая воздушно-газовая смесь может быть использована по прямому назначению. Вот такой принцип работы газогенератора на дровах. Процесс не самый простой, поэтому и устройство данного агрегата непростое. Хотя многие домашние мастера изготавливают их своими руками.

Кстати, пиролизные котлы на твердом топливе – это одна из разновидностей газогенератора. Правда, в них отсутствует этапы охлаждения топочных газов и их очистка. Горючий материал сразу же из камеры сгорания дров попадает внутрь второй топки, где газы обогащаются кислородом и сжигаются. Для других целей газ не используется.

Достоинства и недостатки

Как и любой вид отопительного оборудования, газогенераторные котлы на твердом топливе обладают плюсами и минусами в конструкции и эксплуатации.

Простая конструкция

Достоинства

  • Начнем с коэффициента полезного действия, как с самого основополагающего критерия эффективной работы агрегата. Так вот у пиролизных твердотопливных котлов он имеет диапазон 85-95%. Для сравнения: у обычных дровяных агрегатов КПД не превышает 65%. Коэффициент полезного действия определяет соотношение расхода топлива, которого хватает на выработку необходимого количества тепловой энергии. А она, в свою очередь, должна быть рационально использована для поддержания необходимого температурного режима внутри помещений. Вот такая сложная взаимосвязь.
  • В газогенераторах топливо горит гораздо дольше, чем в обычных приборах. Если в качестве топлива используются дрова, то продолжительность сжигания одной закладки может хватить на пару дней. С углем этот показатель гораздо больше, до одной недели.
  • Устройство газогенератора на дровах имеет определенные конструктивные особенности, которые помогают сжечь топливо до конца. Остается лишь одна зола и сажа на стенках камеры сгорания. Почему это положительная сторона? Здесь два фактора: закладка горит дольше, чистка прибора упрощается.
  • Обычно твердотопливные котлы плохо поддаются автоматизации. Регулировать процессы, происходящие внутри агрегата практически невозможно. В газогенераторных печах на дровах процесс горения можно автоматизировать. Конечно, это не так просто, как, скажем, с газовыми или электрическими отопительными приборами, но такая возможность присутствует.
  • Так как угарные газы очищаются и сгорают, то это говорит о том, что в окружающую атмосферу попадает незначительное количество вредных веществ. На сегодняшний день это один из самых жестких требований, который пиролизными котлами на дровах полностью выполняются.
  • Современные модели газогенераторов обладают различными преимуществами, которые выделяют их из общей категории твердотопливных котлов. К примеру, в топке некоторых моделей можно впихнуть поленья длиною больше одного метра и использовать древесину с влажность до 50%.

Устройство самодельного газогенератора

Недостатки

  • Большой недостаток газогенераторных котлов на дровах – это сложность подачи воздуха в камеру смешения с угарными газами. Естественным способом это сделать очень трудно, поэтому практически все модели в своей конструкции используют механический надув при помощи вентилятора. А это говорит о том, что наш котел тут же переходит в категорию «энергозависимых агрегатов».
  • Если упустить момент падения мощности, особенно, когда она падает ниже половины своего номинала, то на стенках камеры сгорания и в дымоходе тут же начинает образовываться деготь за счет сажи и конденсации влажных паров. Поэтому совет – всегда держите минимальный температурный режим в +60°С.
  • Цена генераторов на дровах для дома выше обычных твердотопливных котлов практически вдвое. Конечно, есть предложения на рынке в виде самодельных отопительных приборов, но нет гарантии, что этот вариант будет работать эффективно и экономно. Так что не стоит рисковать.

Внимание! Выше уже говорилось, что автоматизировать газогенератор проще, чем классический твердотопливный котел. Добавим, что генератор с блоком автоматики работает в разы безопаснее.

Принципиальная схема обычного пиролизного котла

Разновидности дровяных генераторов

Существует достаточно большой модельный ряд газогенераторов, которые работают на дровах. Здесь и очень простые конструкции в виде буржуек, есть и сложные агрегаты, в которых проводятся все процессы: от сжигания дров до чистки топочных газов и их сгорания.

К примеру, твердотопливный котел-буржуйка. По сути, это обычная буржуйка с разделенной пополам топкой горизонтальной перемычкой, один конец которой не доходит до стенки печки. Остается небольшой зазор, по которому топочные газы перемещаются в верхнюю камеру сгорания. Вторая топка представляет собой систему каналов, по которым газы перемещаются снизу вверх. При этом они захватывают свежий холодный воздух, поступающий внутрь котла из нижних сопел. Здесь же и происходит смешение и получение воздушно-газовой смеси. Кстати, холодный воздух, проходя по соплам и каналам, тоже нагревается, так что волноваться, что смесь не загорится, нет причин.

Такая буржуйка хоть и обладает неплохим КПД, все равно является малопроизводительным отопительным агрегатом. Использовать ее для основной радиаторной системы отопления не рекомендуется. А вот для теплых полов она в самый раз.

Пиролизная печь буржуйка

Для основной отопительной системы лучше всего подойдут твердотопливные пиролизные котлы длительного горения. Основа их эффективной работы – это правильно проводимый процесс пиролиза в первой камере сгорания, куда закладываются дрова. Как уже было сказано выше, они в топке должны просто тлеть, ведь сюда поступает небольшое количество свежего воздуха.

От того, как правильно будет проведено размещение топлива и будет зависеть качество его сжигания. Поэтому рекомендуется дрова укладывать как можно ближе друг к другу, оставляя минимальные зазоры между ними. Чем меньше свободного пространства останется, тем лучше. Существует два вида укладки дров:

  1. Рядами в горизонтальной плоскости.
  2. В виде клети или колодца.

Итак, подведем итог. Газогенераторы, работающие на дровах — это неоспоримо наилучший вариант из категории «твердотопливных котлов». У них достаточно большое количество преимуществ перед другими моделями данной категории. Но хотелось бы отметить высокий КПД. Даже только из-за него можно было сделать выбор в сторону газогенератора.

Дровяной газогенератор своими руками: устройство котла на опилках

Природный газ – это самый дешевый источник энергии для системы отопления. Но в наши дни газ стоит не так уж и дешево. Поэтому многие домовладельцы предпочитают использовать в системах отопления альтернативные газогенераторы, работающие на дровах или опилках.

И в данной статье мы рассмотрим процесс создания такого газогенератора. Изучив этот материал, вы сможете собрать дровяной газогенератор своими руками и воспользоваться всеми преимуществами альтернативного способа отопления.

Древесный газогенератор

Газогенератор на дровах: как это работает?

Горючий газ можно добыть не только из скважины. Например, если нагреть дрова до 1100 градусов Цельсия, ограничивая доступ кислорода в зону окисления топлива, то процесс горения перейдет в стадию термического разложения – пиролиза. Итогом пиролиза будет преобразование целлюлозы в низкомолекулярные олефины – горючие газы этилен и пропилен.

Причем КПД «пиролизного» котла в 1,5-2 раза выше, чем у обычного твердотопливного «нагревателя». Ведь выделяемые в процессе пиролиза низкомолекулярные олефины выделяют в процессе горения намного больше энергии, чем сгорающая целлюлоза.

В итоге, генератор на опилках, дровах, жмыхе или любом другом источнике целлюлозы функционирует по следующей схеме:

Схема газогенератора

  • В первичной камере сгорания, в результате классического пиролиза, целлюлоза переходит в низкомолекулярные олефины.
  • На следующем этапе полученные в результате пиролиза олефины проходят сквозь ряд фильтров, очищающих горючие газы от примесей – уксусной и муравьиной кислоты, сажи, золы и так далее.
  • После фильтрации газы нужно охладить, поскольку разогретое топливо отдает меньше энергии на финальной стадии окисления.
  • Далее охлажденные газы переходят во вторичную камеру сгорания, где происходит окончательное окисление (горение) сопровождаемое выделением энергии, поглощаемой стенками (корпусом) котла. Причем во вторичную камеру сгорания газов закачивается отдельная порция воздуха, поскольку первичная камера функционирует в условиях ограниченного поступления кислорода.

Разогретые стенки котла можно соединить с водяной «рубашкой», превратив газогенератор в обычный водонагревательный котел, или использовать в качестве нагревательного элемента воздушного конвектора.

Почему это выгодно?

Построив древесный газогенератор своими руками, вы сможете рассчитывать на следующие выгоды:

Газогенераторные автомобили

  • Уменьшенный расход топлива. Ведь КПД котла с газогенератором равно 90-95 процентам, а у твердотопливного котла – всего 50-60 процентов. То есть, на обогрев одного и того же помещения газогенератор потратит не более 60 процентов топлива, расходуемого обычным твердотопливным котлом.
  • Продолжительный процесс горения. Пиролиз дров происходит за 20-25 часов, а процесс термического разложения древесного угля заканчивается за 5-8 суток. Следовательно, загрузку дров в котел можно проводить всего раз в сутки. А если вы пользуетесь древесным углем, то «зарядка» котла осуществляется раз в неделю!
  • Возможность использовать в качестве топлива любой источник целлюлозы – от жмыха и соломы, до живой древесины с влажностью около 50 процентов. То есть о «сухости» дров можно уже не заботиться. Причем в топку некоторых моделей газогенераторных котлов можно отгружать даже метровые поленья, без предварительного измельчения (колки).
  • Отсутствие потребности в чистке и дымохода, и поддувала. Пиролиз утилизирует топливо практически без остатка, а продукт окисления олефинов – это обычный водяной пар.

Кроме того, необходимо отметить и возможность полностью автоматизировать процесс работы котла.

Разумеется, полностью автоматический газогенератор своими руками вам не создать, но промышленные модели могут работать неделями, потребляя топливо из бункера и управляя процессом разогрева теплоносителя без участия оператора.

К отрицательной стороне практики использования газогенераторов на дровах относятся следующие факты:

  • Такой котел стоит очень дорого. Цена самого дешевого варианта «пиролизного» котла в два раза выше стоимости твердотопливного аналога. Поэтому самые рачительные хозяева предпочитают строить газогенератор на дровах своими руками.
  • Такой котел работает на электричестве, расходуемом на энергообеспечение систем надува воздуха в камеры сгорания. То есть, если нет электричества – нет и тепла. А обычная печь будет «работать» где угодно.
  • Котел генерирует стабильно высокую мощность. Причем снижение интенсивности нагрева спровоцирует сбой в работе всей системы – вместо горючих олефинов во вторичную камеру пойдет обычный деготь.

Но все недостатки «окупаются» обилием положительных характеристик и экономичной работой нагревательного прибора. Поэтому приобретение газогенератора, а тем более самостоятельное строительство такого «отопительного прибора» – это очень выгодное дело. И ниже по тексту мы опишем процесс создания дровяного газогенератора.

Как сделать газогенератор своими руками?

Перед сборкой газогенератора и трансформацией данного прибора в отопительный котел нам нужно заготовить узлы и детали, из которых и будет собираться этот агрегат.

Причем классическое устройство газогенератора на дровах предполагает использование в процессе сборки следующих комплектующих:

Устройство газогенератора

  • Во-первых, корпуса – основы будущего агрегата, во внутренней части этого узла будут установлены все составные элементы котла. Корпус собирается из уголков и листовой стали, предварительно раскроенных и нарезанных по шаблонам и чертежам.
  • Во-вторых, бункера – емкости для хранения топлива (дров, древесного угля, паллет и так далее). Бункер собирается из листового проката и крепится в корпусе. Причем под этот узел можно выделить часть внутреннего пространства корпуса, разграничив ее с помощью металлических плит из низкоуглеродистой стали.
  • В-третьих, камеры сгорания – ее размещают в нижней части бункера. Ведь основная задача этого узла – это генерирование высокой температуры, поэтому камеру изготавливают из жаропрочной стали. А крышку бункера – герметизируют, препятствуя несанкционированному насыщению камеры сгорания кислородом.
  • В-четвертых, горловины камеры сгорания – особого участка, где реализуется крекинг смол. Эту деталь камеры отделяют от корпуса с помощью асбестовых прокладок.
  • В-пятых, коробки воздухораспределителя – особого узла, размещаемого вне корпуса. Причем врезка штуцера воздухораспределителя в корпус осуществляется посредством обратного клапана. Этот узел обеспечивает приток кислорода в камеру сгорания олефинов, препятствуя выходу горючих газов из камеры сгорания.
  • В-шестых, комплекта фильтров и патрубка, соединяющего горловину камеры сгорания дров с камерой сгорания олефинов.

Кроме того, нам понадобится колосниковая решетка – она нужна для отделения углей в камере сгорания, лучки и дверцы – они обеспечивают доступ в полости корпуса, в том числе и в бункер или камеру сгорания.

Подготовив все указанные элементы, мы можем приступать к сборке газового генератора, осуществляемой по следующему плану:

  • Вначале собирают корпус.
  • Затем в корпусе обустраивают бункер с камерой сгорания, дополняя конструкцию колосниками и приточным каналом (поддувалом).
  • Горловину камеры сгорания дров соединяют патрубком с камерой горения олефинов. Причем в патрубок можно вывести на систему охлаждения газов, монтируемую за пределами корпуса.
  • В верхней части корпуса собирают коробку воздухораспределителя, предварительно подготовив ввод в камеру сгорания олефинов с помощью обратного клапана.
  • Далее на петли монтируют дверцу в бункер и лючки в камеры сгорания (и дров и олефинов).

Собранный таким образом котел оборудуют воздушными компрессорами (воздухораспределитель и приточный канал в камеру сгорания дров) и вытяжной трубой (дымоходом). Ну а в самом конце на корпус котла, желательно в зоне вторичной камеры сгорания, монтируют водяную рубашку с приточным и выпускным штуцером, в которой будет циркулировать теплоноситель. Причем рубашку можно разместить в двойных стенках корпуса или камеры сгорания олефинов.

«Имеется 24 236 грузовых газогенераторных автомобилей» – Власть – Коммерсантъ

Как только человечество осознало, что бензин — это кровь войны, без промедления начались поиски замены дорогого продукта более дешевыми аналогами. Перед большинством стран стоял выбор — дизельные моторы или моторы, работающие на выработанном из дров газе. Как бы странно это ни звучало, но СССР к производству газогенераторных автомобилей подтолкнули репрессии.

Евгений Жирнов

«На твердое местное топливо»

После Первой мировой войны и в странах-победительницах, и в стане побежденных в одинаковой степени задумались об альтернативе эффективному, но дорогому и не всегда легко получаемому державами, не имеющими запасов нефти, бензину. Судя по всему, первыми за поиск иного топлива для двигателей внутреннего сгорания приступили французы. Они не только принялись к освоению дизелей, но и на рубеже 1920-х попытались использовать для них совершенно новое топливо, получаемое из растительного сырья. В африканских владениях Франции наладили выпуск экспериментального горючего и провели опыт по его использованию на автомобиле с дизельным двигателем.

Первые опыты показались авторам эксперимента вполне удачными. Машина ездила ничуть не хуже, чем на обычном дизельном топливе. И после этого Франция, казалось бы, могла навсегда забыть о проблемах с поиском, добычей или поставками нефти. Вот только цена эксплуатации такого биотоплива с учетом доставки в метрополию была в разы выше дизельного. Поэтому французы обратили внимание на опыты, которые велись в побежденной, разделенной и обездоленной Австрии.

Там в качестве топлива решили использовать собственный, естественный и имеющийся в достаточном количестве ресурс — древесину. Добывание горючего газа из древесного угля надежно отладили в XIX веке, когда этим способом добывался светильный газ для бытовых нужд жителей крупных европейских городов. Возможность использовать газ в качестве топлива для двигателей внутреннего сгорания не было ни для кого новостью. Так что оставалось лишь соединить их воедино.

Однако в ходе решения несложной, казалось бы, технической задачи возникло немало проблем. К примеру, содержавшиеся в древесном газе смолы осаждались в двигателе, приводя его в негодность. Чтобы избежать этого, нужно было ставить на автомобиль газоочиститель, а вместе с самим газогенератором, газоохладителем дополнительное устройство увеличивало и без того немалый вес всей установки.

В 1920-х годах считалось, что австрийцы, первыми начав производство газогенераторов, не смогли справиться с основными проблемами так, как это сделали французы. У них появились первые промышленные образцы автомобильных генераторов, а вслед за тем — грузовики, тракторы и автобусы, ездящие на дровах и древесном угле. Не отставали и германские инженеры. В Советском Союзе тоже появились энтузиасты автомобильных газогенераторов, но до появления «Автодора» (см. «История» N1, 2014 года) они нигде не находили понимания и поддержки.

В 1928 году автор первой советской газогенераторной установки для автомашин профессор В. С. Наумов начал пропагандистскую кампанию в поддержку своего детища. Главный упор в его выступлениях, конечно же, делался на экономию дорогой нефти:

«Мировые запасы нефти,— писал Наумов,— составляют в настоящее время 0,15% от общих запасов энергии, заключенных в каменном угле, дровах, торфе, воде и ветре. Для СССР же запасы нефти исчисляются в 0,6% от общих запасов энергии страны. Расход нефти за последние 50 лет увеличился более чем в 70 раз, достигнув в 1924 году 8,5 млрд пудов. За последние годы расход нефтепродуктов особенно сильно повысился в связи с необычайным ростом легкового и грузового автотранспорта, а также авиации. Это положение с нефтепродуктами еще более обострилось с момента появления трактора. Современные тракторы питаются почти исключительно нефтепродуктами, и они прибавились к основным потребителям нефтепродуктов… Наконец, особенно высокая стоимость нефтепродуктов на окраинах и рост цен на бензин и керосин могут сделать применение тракторов в сельском хозяйстве экономически невыгодным. По нашему мнению, необходимо незамедлительно перевести наш промышленный и сельскохозяйственный грузовой автотранспорт, а также тракторы на твердое местное топливо — на каменный и древесный уголь, дрова, торф и пр.».

«Надо еще много поработать»

На основе французского опыта профессор Наумов доказывал, что газогенераторные автомобили не только имеют право на жизнь, но и могут вытеснить бензиновые:

«Пробег на 120 км., организованный во Франции в 1922 г., показал, что… при пробеге 3-тонного грузовика на 100 км. общий расход угля составит 30 кг., или около 2 пудов. Следующий конкурс газогенераторных грузовиков был устроен в 1923 г. на расстояние 1400 км. Конкурс дал прекрасные результаты, а именно — все грузовики прошли без повреждений, причем расход древесного угля на тонну-километр оказался значительно меньше расхода, полученного при пробеге в 1922 году.

Из пробегов последних лет заслуживает особенного внимания пробег 17-местного газогенераторного автобуса Берлие, который с 2 по 30 августа прошел 5250 км. в 25 этапов с 4 остановками на сутки. Автобус шел на дровах, причем средний расход дров оказался равным 47,8 кг. на 100 км. пробега, что по ценам во Франции дает 10-кратную экономию в расходе на топливо по сравнению с бензином. Кроме дров на весь пробег было израсходовано 12 литр. бензина, главным образом для пуска двигателя в ход, а также на чистку частей его в гаражах».

Наумов обещал, что грузовик с газогенератором его конструкции покажет себя не хуже, поскольку первые испытания с работой на древесном угле дали отличные результаты. А также обещал вскоре создать конструкцию, работающую на обычных дровах.

Однако на практике все оказалось не так просто. Закупленные для работы на строительстве дорог французские грузовики «Берлие» оказались весьма прихотливыми в эксплуатации. Машина плохо переносила сырую погоду. А ее котел нужно было заправлять тонкими, тщательно высушенными чурочками. Итоги первых недель, как говорилось в опубликованном в 1929 году отчете инженера Ф. Кокорина, эксплуатации не могли не радовать:

«Из данных о работе «Берлие» приблизительно за один месяц (32 рабочих дня) видно, что за это время он с общим грузом в 11 912 т затратил 2158 кг дров, 50 л бензина и 13,5 л масла. При стоимости (вместе с резкой) дровяного топлива с просушкой по 6 коп. за 1 кг, остальных материалов; по рыночной цене и оплате шофера и рабочих, стоимость 1 тонно-километра получилась примерно вдвое ниже стоимости лошадиной возки».

Однако шоферу пришлось превратиться в механика, плотника и истопника, что вряд ли могло понравиться представителям этой еще довольно редкой в те времена профессии.

Тем временем словесные баталии между сторонниками различных видов топлива не прекращались. Автодоровцы, отстаивавшие газогенераторы продолжали доказывать, что их конструкция даст ошеломляющую экономию государственных средств. А для подкрепления своих слов начали проводить пробеги машин на твердом топливе. О результатах пробега, проведенного в 1931 году, они докладывали:

«Недавно состоялся пробег автомобиля на угле из Ленинграда в Петрозаводск. Машина прошла больше тысячи километров. Научная экспертиза, проведенная участником пробега проф. М. Фабрикантом, показала блестящие качества газогенераторного автомобиля конструкции проф. В. Наумова. С точки зрения технической экспертизы никогда так блестяще не подтверждалась возможность работы автомобиля на твердом топливе, на угле, как в данном случае. В Карелии, одолевая Олонецкий хребет, машина брала подъемы в 65 градусов, ни разу не переходя на бензин. Шедший одновременно из Ленинграда в Петрозаводск обычный автомобиль на бензине израсходовал 206 литров, в то время как газогенераторный автомобиль использовал 193 кг обыкновенного угля».

Однако, когда в 1935 году прошел автопробег с участием газогенераторных автомобилей различной конструкции и с разными видами топлива, результат выглядел совсем иначе:

«Особенно ярко,— говорилось в опубликованном отчете,— и остро выявилась необходимость особого внимания к топливу автомобильного газогенератора. Первый этап пробега был знаменателен обилием осадков и высоким содержанием влаги топлива, резко снизившей показатели машин. Вода собиралась в очистителях, охладителях, в газопроводе, глушила газогенератор и вынуждала машину к остановке.

Пробег доказал, что автомобиль может работать на древесном угле и дровах, но это топливо должно быть сухим. Для дров влажность должна быть не выше 15-18 проц. и для древесного угля — 25-27 проц. На топливо автомобильного газогенератора надо будет обратить серьезное внимание и организовать его правильную подготовку и культурное хранение.

Второй вывод пробега касается двигателя. В общем наша конструкция отстала от своих бензиновых собратьев, и надо еще много поработать, чтобы приблизить газогенераторную машину к бензиновой. Пробег показал, что газовым мотором мы занимались мало и что этот вопрос должен вместе с топливом встать на повестку завтрашнего дня нашей работы».

«Простаивают длительное время»

Но главное, для такой машины требовался водитель, который мог бы столь же культурно, как хранить дрова, эксплуатировать сложную конструкции, очень часто ее прочищать и в общем делать в разы больше того, что требовалось от обычного шофера. И желающих, понятно, не находилось. Ко всему прочему, двигатель на газе развивал гораздо меньшую мощность, и первые выпускавшиеся газогенераторные грузовики ЗИС-13 на таежных дорогах приходилось в каждом рейсе вытаскивать из грязи. Даже при огромном дефиците машин от газогенераторных грузовиков водители и руководители гаражей отбрыкивались как могли.

Однако апологеты газогенераторов не сдавались. После начала в 1937 году репрессий они начали писать о том, что их детищу не давали хода враги и вредители из Главка автотракторной промышленности:

«Вредители из б. ГУТАП,— писал М. Юнпроф,— тормозили конструирование и развитие производства советских газогенераторных автомобилей, пытались сорвать разрешение проблемы большого государственного значения — дать стране машины, работающие на твердом топливе. Указания правительства, требования общественности и печати к ГУТАП и НАТИ — возглавить конструкторскую работу и широко организовать производство и внедрение газогенераторов — игнорировались.

Конструкторская работа оказалась оторванной от заводов, выпускающих газогенераторные автомобили, что приводило к отсутствию должной ответственности за качество машин. Не было до сих пор и необходимой базы по производству газогенераторов.

Образцы газогенераторных машин и установок недопустимо долго находились в испытаниях. В конструкции безответственно вносилось бесчисленное количество поправок, затягивалась организация серийного производства, ничем не стимулировалось освоение производства газогенераторных машин на заводах».

Стимул появился в те же годы репрессий. Теперь в стране было много людей, имеющих много времени для работы на государство в местах столь и не столь отдаленных. А газогенераторные автомобили и трактора, пусть и требующие огромных трудозатрат, на лесозаготовках и стройках в тайге, где в обилии были дрова, а также в угледобывающих районах могли сэкономить нужный для армии бензин.

Правда, недостатки газогенераторных автомобилей никуда не исчезли. Разжигать генератор из-за опасности пожаров можно было только на открытом месте, ездили они медленно, грузоподъемность оставалась такой же низкой. Массово выпускавшиеся ГАЗ-42 и ЗИС-21 потихоньку пытались переделывать на работу на бензине. Но Совнарком СССР в 1942 году специальным постановлением это запретил.

Эра газогенераторных грузовиков завершилась вместе с эрой ГУЛАГа. Не стало дармовой рабочей силы и большая часть твердотопливного транспорта оказалась на приколе. 10 июня 1954 года заместитель министра внутренних дел СССР Н. П. Стаханов докладывал в Совет министров СССР:

«В народном хозяйстве СССР имеется 24 236 грузовых газогенераторных автомобилей, из которых исправных 10 804, а остальные 44,6% машин простаивают длительное время из-за неисправности газогенераторных установок и отсутствия их в торгующей сети. Особенно неблагополучно обстоит дело с использованием газогенераторных автомобилей ГАЗ-42, так как газогенераторные установки к ним промышленностью не выпускаются. Из 1060 автомобилей ГАЗ-42 на ходу лишь 139, а остальные находились в ожидании ремонта. Не обеспечиваются потребности автохозяйств в газогенераторных установках для автомобилей ЗИС-21. По этой причине из 20 135 автомобилей в неисправном состоянии 57,7%, или 11 629 машин.

При распределении газогенераторные автомобили направляются в ряде случаев в районы, где отсутствует необходимое топливо. Так, в 1953 году Центросоюз завез в Саратовскую область для продажи колхозам 80 грузовых газогенераторных автомобилей, из них 33 машины продал колхозам, которые использовать их на твердом топливе не имеют возможности. Центросоюз, несмотря на распоряжение Совета Министров СССР от 11 декабря 1953 года N16034-р, не заменил указанные автомобили бензиновыми, и в настоящее время приобретенные колхозами газогенераторные автомобили «УралЗИС-352″ не используются. Подобное положение отмечается в колхозах Украинской ССР и других краев и областей. Поскольку Постановлением СНК СССР N1616-1942 года эксплуатация газогенераторных автомобилей на бензине запрещена, многие колхозы обращаются в Совет Министров СССР и в МВД СССР с просьбой разрешить переоборудование газогенераторных автомобилей для использования их на бензине. В 1953 году такие просьбы поступили от 57, а в 1954 году — от 42 колхозов».

Белорусский умелец построил дровяной мотоцикл — Российская газета

Нас пугают нефтяным кризисом. Что бензин будет стоить, как односолодовый виски, и частные машины неизбежно станут на прикол. Но 28-летний Сергей Атрощенко из белорусского Лепеля плевал на эти прогнозы. Он построил мотоцикл на дровах!

Немного истории

Газогенераторные установки известны давно. По дорогам Великой Отечественной месили грязь переделанные под дрова «полуторки». Да вы наверняка помните их по хронике. Едет грузовик, а за кабиной — две высокие жестяные бочки. Это и были газогенераторы. Там при минимуме кислорода тлели сухие чурки. Выделялся дым, то есть газ. В основном угарный. Страшно ядовитая штука!

Но газ горел не хуже природного. На нем-то и ездили грузовички. Так как удельная теплота сгорания газа была меньше паров бензина, то и мощность у «полуторок» была вдвое меньше. Проехал десяток километров — стоп, машина! Пора загружать в бункеры новую порцию чурок. А свечи чистить приходилось чуть ли не по два раза за поездку — деготь оседал в цилиндрах!

Все это делало дешевый вид транспорта не вполне боевым. Снаряды на передовую на такой ненадежной машине не повезешь. Поэтому эксплуатировались газогенераторные корыта в основном в тылу.

Прошло время. Про дрова забыли. Мы уже думаем об электромобилях. Гибриды заполонили автосалоны. В бой рвется водород. А уж на природном газе или пропане ездит чуть ли не половина всех городских автобусов и «Газелей» в СНГ.

Юность самоделкина

Сережа Атрощенко с детства любил машины. Его коллекция в масштабе 1:43, которая и сейчас украшает гостиную, вызывала острую зависть у мальчишек из подъезда. Сережа вырос, а любовь осталась. Окончил техникум на автомастера. Да так, что его оставили преподавать там. Купил себе мечту — 21-ю «Волгу». Как у Юрия Деточкина.

— У нас два гаража. Один в деревне, другой в городе. Так мы не знаем, где он выходные проводит. Знаем только — в гараже, — рассказывает мама Сергея Наталья. Рядом сидит папа героя Александр. И тоже не может сказать, где Сережа.

Мы смотрим фотоальбом. Мотоциклы, мотоциклы. И тут военная выцветшая фотка: мужчина в шинели и на мотоцикле.

— Это дедушка Сережи Мугалим Букаев. Он был военным мотоциклистом.

Сережа выложил в Интернет отчет о своей самоделке под псевдонимом. Точнее, под «ником» oppozit750. В Лепеле о нем практически никто ничего не знал. Ну, ходит спокойный парень, ковыряется в мотоцикле. И все. Даже замредактора местной газеты не знала, что «герой» живет в соседнем подъезде. Я нашел номер сотового Сережи. Но он… сбежал от меня. По телефону Сергей попытался объяснить, что не хочет никакой славы. Изобретением это не считает. И вообще не понимает, откуда такой интерес к его скромной персоне.

— Имейте в виду, я просто хотел создать действующую модель газогенераторной установки, чтобы показать ее своим ученикам, — объяснил он мне по телефону. — А сейчас не мешайте мне. Я готовлюсь к техосмотру в гараже у товарища. Машина разобрана. Искать меня бесполезно. Так что извините, если что не так.

Удивительно скромный изобретатель! Конечно, ни о каком дефиците бензина в Белоруссии и речи нет. Но, признайтесь, приятно иметь такой вот агрегат, который при любом экономическом кризисе и катаклизме вывезет на ровную дорогу.

Пахнет колбасой

Сергей взял молочную флягу, переработал ее, добавил «холодильник» из жестяного ведра, собрал арматуру из водопроводных труб и повысил степень сжатия серийного двигателя мотоцикла «Урал» до 10. Из инструментов ему понадобились «болгарка» и сварка — все что есть в любом гараже. Агрегат назвал гордо — «Колясыч». После пробных поездок подошел к маме:

— Давай я тебя по ягоды повезу на «Колясыче». Давно обещал!

На первую поездку сбежался весь дом. Мама Наташа села в коляску, надела шлем. Сережа все колдовал у раскрытого молочного бидона. Чтобы агрегат не приняли за самогонный аппарат, он тщательно вывел белой краской «ГАЗОГЕНЕРАТОР».

— Ой, вы знаете, как приятно было! Я еду на изобретении своего сына. И с ветерком так! Он гордый сидит, правит. А я как гордилась перед соседями! Да купи он «Мерседес», мне бы так приятно не было!

Вот что написал oppozit750 (а в миру Сергей Атрощенко) на своем форуме:

«Достоинство «Колясыча» — экономия денег на топливо. Недостатки: воняешь, как копченая колбаса, желтые, как у курильщика, руки, долгие запуски (первый раз за день — около 10 минут, потом меньше), сильное снижение мощности двигателя (много пользуюсь низкими передачами и постоянно «кручу» двигатель), перегрев двигателя в городском цикле (из-за больших оборотов), много времени уходит на заготовку топлива и обслуживание установки, очень требователен к влажности чурок. Теперь я понимаю, почему о газогенераторах забыли как о страшном сне».

Вот что писал военинженер Л. Рудаков в журнале «За рулем» в 1940-м году: «Все агрегаты газогенераторной установки нуждаются в периодической очистке от сажи, золы и других уносов из газогенератора. Для чистки открывают все люки, кочергой выгребают уголь восстановительной зоны, а также скопившиеся там сажу и золу. Проводить очистку следует через 800 — 1000 км.»

Всплеск интереса к газогенераторам происходит, как только цены на нефть резко подпрыгивают или идет война. Во время Второй мировой грузовики переводили на «древесный» газ Германия, Франция, Англия, Америка и даже Япония. В СССР выпустили на различных шасси более двухсот тысяч газогенераторных грузовиков, тракторов и дрезин. Самым популярным был «Урал-ЗИС 354». Но уже в 1946 году, как только цена на бензин снизилась до 30 центов за литр, разработки новых газогенераторов забросили. Машины в спешном порядке переделали на бензин. Технологии были утеряны. Но не навсегда.

На сегодня «Колясыч» пробежал около тысячи километров по дорогам общего пользования и по пересеченной местности. Конечно, тягаться «дровяному байку» со своими бензиновыми собратьями нереально. Не только мощность подкачала. Грузоподъемности газогенераторного «Урала» еле-еле хватило, чтобы отправиться с мамой в лес. Да и кошки сбегаются на запах копченой колбасы. Но как пособие для учеников и просто вид технического досуга — «Колясыч» неповторим!

Только об одном жалеет мама Наташа. Что Сережа за всей этой техникой девушек не замечает. Жениться не хочет — все время в гараже да в гараже. Правда, и не пьет совсем. И не курит.

— Ну когда его уже заметят? Скорее внуков хочу. Так в газете и напишите! — попрощалась со мной мама.

Я вернулся в Москву и рассказал о лепельском изобретателе в Союзе мотоциклистов России, который без политики и религиозных предрассудков объединяет настоящих любителей двухколесной техники.

— Мы приглашаем белорусского самородка к нам на мероприятие на Васильевский спуск в Москве, — сообщил «РГ» председатель правления Павел Фролов. — Встретим, покажем столицу и попробуем его мотоцикл на дровах в деле. Это очень интересное новаторство, которое привлечет новых поклонников мотоцикла. А насчет невест — их там будет достаточно. Пусть мама не горюет.

Когда верстался номер, стало известно, что Сергей Атрощенко принял приглашение российских мотоциклистов. Конечно, чтобы приехать своим ходом в Москву, речи не идет. Конструкция еще сырая и требует доработок — мало ли что случится в дороге? Сергей решил прибыть на фестиваль на своей любимице — 21-й «Волге». А «Колясыч» поедет на прицепе. Зато как увидите дымок над Красной площадью, знайте, что Сергей уже катает любителей мототехники.

Кстати

Газогенератор — это установка для получения горючего газа из твердого топлива. В качестве твердого топлива применяется уголь, торф, древесина и даже солома. Превращение твердого топлива в газообразное называется газификацией (пиролизом) и заключается в сжигании топлива с поступлением количества кислорода воздуха или водяного пара, недостаточного для полного сгорания. Генераторный газ состоит из горючих компонентов (СО, Н2, СН4) и балласта (СО2, О2, N2, Н2О). Полученный газ очищают, охлаждают и смешивают с воздухом.

Конкретно

Технические характеристики «Колясыча»
  • Объем двигателя 750 см[3]
  • Степень сжатия 10
  • Мощность 10 л.с. (расчетная)
  • Скорость 80 км/ч (на сухих чурках)
  • Расход топлива 1 мешок чурок на 100 км
  • Экипаж 3 чел.

дрова и уголь вместо бензина

Прошедший в рамках «Олдтаймер-Галереи» фестиваль «Моторы Победы» собрал множество уникальных экспонатов, извлечённых из музейных запасников и бережно отреставрированных. Среди них газогенераторный автомобиль ГАЗ-АА 1940 года выпуска, восстановленный мастерской Simonov Motors. Машина была представлена на стенде музея НАМИ.

Андрей Карасёв

Газогенератор — это установка для получения горючего газа из твёрдого топлива. В качестве твёрдого топлива, как правило, применяются местные ресурсы: уголь, торф, древесина, солома, а также отходы деревообрабатывающих производств. Превращение твёрдого топлива в газообразное называется газификацией и заключается в сжигании топлива с поступлением количества кислорода воздуха или водяного пара, недостаточном для полного сгорания.

До начала Великой Отечественной войны газогенераторные автомобили выпускались Автозаводами им. Сталина (ЗИС) и им. Молотова (ГАЗ). Эти же заводы выпускали комплекты оборудования и деталей двигателя для переделки бензиновых автомобилей в газогенераторные. Стоимость твёрдого топлива, применяемого в «газгене», в большинстве случаев оказывалась значительно ниже жидкого. Основным преимуществом использования древесины являлась его доступность.

В установках НАТИ использовалась воздушная фурменная труба УТВ-2
конструкции инженера Д. И. Высотского.

Установка НАТИ-Г71, которой оснащён отреставрированный бортовой грузовик ГАЗ-АА, представляла собой видоизменённую конструкцию газогенератора Г-59У. Изменения были произведены с целью сокращения расхода металла. Модель была универсальной, могла работать на многозольном торфе, буром угле и древесных чурках. Скомпонованная на шасси система представляла собой газогенератор обращённого (опрокинутого) процесса газификации. Кстати, этот тип оборудования, где воздух подавался в среднюю часть газогенератора, был специально приспособлен для работы с древесным топливом. В составе установки также присутствовали две секции очистителя-охладителя, тонкий очиститель, вентилятор для розжига энергоносителя, плюс разные трубопроводы. Газогенератор и тонкий очиститель крепились на двух балках непосредственно за кабиной, а платформа кузова, соответственно, укорачивалась. Вентилятор, который использовался для розжига (или раздува углей после остановки свыше 15–20 мин.), устанавливался на правой подножке, а входное отверстие в воздушную коробку газогенератора закрывалось автоматическим клапаном.

Смеситель впускного коллектора.

Топливо загружалось через верхний люк, крышка которого прижималась стальной рессорой. Розжиг осуществлялся через воздушный клапан при помощи факела. Газогенератор имел два боковых люка, закрываемых литыми крышками на резьбе и уплотняемых железоасбестовыми прокладками.

Электрический стартёр соседствует с рулевым валом.

Установка Г-71 была спроектирована в НАМИ в 1943 году. От имевшейся ранее в производстве модели (Г-59У) усовершенствованная модель отличалась уменьшенной высотой, за счёт сокращения ёмкости бункера на 26 %. Как следствие, дальность хода автомобиля на одной «заправке» берёзовыми чурками уменьшилась с 80 до 50 км. С целью привязки модернизированного агрегата к существующей компоновке автомобиля тонкий очиститель сдвинули вперёд, а запасное колесо разместили между кабиной и грузовой платформой (у автомобилей с установкой Г-59 это пространство использовалось для хранения топлива).

Газогенератор и тонкий очиститель крепились на двух балках непосредственно за кабиной, а платформа кузова, соответственно, укорачивалась.

Диаметр тонкого очистителя установки Г-71 был уменьшен с 400 до 250 мм, высота — с 1400 до 1200 мм. Газ в очистителе прорывался через воду и два зубчатых порога, расположенных друг за другом. Установки Г-71, Г-70, Г-69 и Г-59У имели почти одинаковые вентиляторы. Они отличались от вентилятора ГАЗ-42 только литым корпусом и заслонкой на выводном патрубке. Ещё несколько слов о подготовке воздуха. В установках НАТИ использовалась воздушная фурменная труба УТВ-2 конструкции инженера Д. И. Высотского. К разработке этого важного узла приступили в 1939 году. Требовалось создать камеру газификации, рациональную с точки зрения простоты изготовления, долговечности и не уступающую по качеству рабочего процесса принятым к серийному производству литым камерам дровяных газогенераторов типа «Имберт» (одна из ключевых разработок в мировой газогенерации). С целью выявления пригодности камер УТВ для замены ранее выпускаемых их опытные образцы были подвергнуты всесторонним испытаниям: лабораторным и полевым — с пробегом 15 тыс. км. После многочисленных тестов в 1940 году была предложена улучшенная фурменная труба УТВ-2 с двухсторонним подводом воздуха и усиленными кромками фурменных отверстий.

Серьёзные доработки, естественно, пришлись и на силовой агрегат. В связи с трудностями, возникающими при переоборудовании двигателя ГАЗ-А для работы на генераторном газе, предусматривающую замену помимо прочих деталей, также карбюратора и впускного коллектора, автотракторный институт разработал двигатель НАТИ-Г71. В нём, в отличие от ГАЗ-42, использовался имеющийся коллектор и карбюратор серийного двигателя, а также заменялись сложные в изготовлении тросы простыми жёсткими тягами. Корпус смесителя, в зависимости от производственных возможностей изготовителя, мог быть выполнен сварным или литым. Управление дроссельной заслонкой делалось независимым от педали акселератора при помощи дополнительной жёсткой тяги, которая выводилась на щиток управления рядом с тягой воздушной заслонки карбюратора.

Для работы на генераторном газе Научный автотракторный институт разработал двигатель НАТИ-Г71.

В условиях военного времени к производству газогенераторов приступили предприятия местной промышленности, представляющие собой кустарные мастерские. В Москве к переоборудованию автомобилей подключился авторемонтный завод. Часть автобусов столицы также переводились на твёрдое топливо. Для этого газогенераторную установку размещали в прицепе.

Производство газогенераторных установок организовывалось каждым Наркоматом самостоятельно, поэтому были взяты под наблюдение и систематически оказывалась техпомощь и консультации изготавливающим газогенераторные установки заводам: № 331 Наркомата боеприпасов (НКБ), «Комега» (НКТП), мехзавод «Главкрупа» (НКЗага), № 5 Метростроя. Аналогичная работа проводилась на автобазах № 1 и 5 Метростроя, № 3 ХОЗУ НКВД.

В этот период значительная часть автотранспорта переводилась на твёрдое топливо. Доля газогенераторных автомобилей в автохозяйствах превышала 50 % и продолжала увеличиваться, достигая 90 %. Газогенераторные автомобили широко использовались не только в автотранспортных батальонах Красной армии, но и в народном хозяйстве. Вплоть до 70‑х годов на Чуйском тракте встречались напиленные поленницы, своего рода мобильные АЗС.

Хочу получать самые интересные статьи

Авто на дровах — Энергознание на портале Энерговектор

Идея газогенераторного автомобиля,
двигатель которого работает на газе, получаемом из твёрдого топлива, не нова,
она возникла ещё в конце XIX — начале XX веков. Первые опыты по газификации
дерева проводились ещё в 1870-х, когда полученный газ использовался для
освещения улиц и приготовления пищи. Первый классический газогенераторный
автомобиль, работающий на дровах и древесном угле, был сконструирован в 1900 г. во Франции. Вскоре
патент на такой автомобиль был зарегистрирован и в России.

Принцип прост

Газификация дерева и других материалов — это процесс, в котором исходное сырьё превращается в горючие газы после
нагрева. В транспортное средство устанавливается специальный котёл-газогенератор,
по виду напоминающий водонагреватель. Он почти доверху набивается древесиной,
которая сжигается при ограниченном доступе воздуха. В котле создаётся очень высокая
температура (до 1400 °C),
под действием которой твёрдое топливо разлагается с выделением
газов — горючих (этилен, метан, угарный газ, водород) и негорючих (азот, углекислый
газ). Таким образом, автомобильный газогенератор — это простой, по сути, агрегат, притом громоздкий и
конструктивно осложнённый дополнительными системами.

Ford Model A выпуска 1929 г.

Помимо собственно производства газа мобильная газогенераторная установка
охлаждает его, очищает и смешивает с воздухом. Поэтому классическая схема
включает сам газогенератор, фильтры грубой и тонкой очистки, охладители,
электровентилятор для ускорения розжига и трубопроводы. Получаемая смесь газов и
подаётся в ДВС в качестве топлива.

Газогенераторный автомобиль (ГГА), быть может, не так элегантно выглядит, как его бензиновые и дизельные собратья,
однако экономически эффективнее и экологичнее их. Пробег ГГА от одной заправки
примерно такой же, как у электромобилей, но, в отличие от последних, проблем с
перезаправкой, по крайней мере, на большей
части территории России, нет никаких. После повышения цен на бензин интерес к
этой почти забытой технологии возрождается: умельцы переводят свои машины на
дровяное топливо.

Немного истории

В 1920-х немецкий инженер Георг Имберт разработал удачный серийный газогенератор.
Полученные в нем газы охлаждались, очищались и осушались, после чего подавались
в слегка доработанный ДВС транспортного средства. Генератор Имберта массово
производился с 1931 г.
В конце 1930-х эксплуатировалось около 9 тыс. ГГА, почти исключительно в
Европе.

Эта технология стала общеупотребительной в европейских странах и
Советском Союзе во время Второй мировой войны,
когда потребление нефтепродуктов нормировалось. В одной лишь Германии к концу
войны использовалось почти полмиллиона ГГА. Была построена сеть из примерно 3
тыс. «заправочных станций», где водители могли пополнить запас дров. Газификаторами
дров оборудовались не только легковые автомобили, но и грузовики, автобусы,
тракторы, мотоциклы, суда и железнодорожные локомотивы. На древесном газе
ездили даже танки.

ГАЗ-42

В 1942 г.,
когда эта технология ещё не достигла пика популярности, было около 73 тыс. ГГА — в Швеции, 65 тыс. — во Франции, 10 тыс. — в
Дании, 9 тыс. — в Австрии и Норвегии и почти 8 тыс. — в Швейцарии. В
Финляндии в 1944 г.
эксплуатировались 43 тыс. «дровяных транспортных средств», в том числе 30 тыс.
автобусов и грузовиков, 7 тыс. легковых автомобилей, 4 тыс. тракторов и 600
легкомоторных судов. ГГА использовались в США, Азии и Австралии, где их было 72
тыс. В общей сложности во время Второй мировой
по миру использовалось более миллиона ГГА.

В СССР с 1935 г.
и до самого начала Великой Отечественной войны на предприятиях Министерства
лесной промышленности и ГУЛАГа «полуторки» ГАЗ-АА и «трёхтонки» ЗИС-5, а также
автобусы на их базе переделывались для работы на дровах. Также отдельными
партиями газогенераторные версии грузовиков производились самими автозаводами.
Например, советские автоисторики приводят число 33840 — столько было выпущено
газогенераторных «полуторок» ГАЗ-42. Газогенераторных ЗИСов моделей ЗИС-13 и
ЗИС-21 в Москве было произведено более 16 тыс.

За довоенное время советские инженеры создали более 300 различных
вариантов газогенераторных установок, из которых 10 дошли до серийного
производства. Во время войны конструкторы серийных заводов подготовили чертежи
упрощённых установок, которые могли изготавливаться на местах в автомастерских
без применения сложного оборудования. По воспоминаниям жителей северных и
северо-восточных регионов СССР, грузовики на дровах можно было встретить в
глубинке вплоть до 1970-х.

После войны, когда ограничения на отпуск бензина были сняты, газогенераторные
машины начали быстро исчезать. В начале 1950-х в ФРГ осталось всего 20 тыс.
ГГА. Единственная на сегодня страна, где массово используются автомобили на
дровах, — это Северная Корея. В условиях изоляции от мировой экономики там ощущается
дефицит жидкого топлива.

В 1957 г.
шведское правительство инициировало исследовательскую программу подготовки к
быстрому переходу на ГГА в случае внезапного дефицита нефтепродуктов. У Швеции
нет запасов нефти, зато много лесов. Цель исследования — разработать
усовершенствованный стандартизованный газогенератор, который можно было бы
устанавливать на транспортные средства любых типов.

Это исследование, оплаченное компанией Volvo, позволило
получить большой объём теоретических сведений и практического опыта эксплуатации
различных видов газогенераторных автомобилей и тракторов, общий пробег которых превысил
100 тыс. км. Результаты были обобщены в документе, датированном 1986 г., в котором также
обсуждаются некоторые эксперименты в других странах. Шведские и особенно
финские инженеры-любители использовали эти данные для дальнейшего развития
технологии.

Чем топить?

В основном используются древесина в различных видах (дрова, отходы
лесозаготовки и мебельной промышленности, пеллеты и т. п.) или древесный уголь,
но список этим не ограничивается. Пластик, резина, полиэтилен, тряпичная
ветошь, различный мусор, птичий помёт и многие другие виды отходов могут служить
топливом для газогенераторного котла (конечно, расход топлива и состав газа
меняются в зависимости от сырья). Подсчитывая стоимость дров и древесного угля,
нельзя забывать о различных бесплатных отходах, которые могут быть
использованы, — лузга семечек, скорлупа орехов, стержни кукурузы, отработанный
кофе после кофемашин, сено, торф. Любители ГГА утверждают, что их автомобили
очищают придорожную полосу от мусора.

Реальная экономия

Для автомобиля, расходующего 10 л бензина на 100 км, потребление дров
после установки современного газогенератора составляет в среднем около 20 кг. При этом мощность двигателя
снижается всего на 4%, показатели максимальной и крейсерской скорости почти не меняются.

Таким образом, килограмм дров заменяет пол-литра бензина. Стоимость
килограмма дров примерно втрое меньше стоимости литра бензина, так что экономия
очевидна.

ЗИС-13

Один из самых серьёзных недостатков ГГА — большое время выхода
газогенератора на режим. При работе на древесном угле двигатель можно запустить
уже через 10-30 с после розжига котла, на дровах (и мусоре) — через 5-15 мин.

Октановое число газа, получаемого таким способом, доходит до 110-120, так
что газ снижает детонацию и в целом щадит
двигатель. В отличие от бензина, газ не смывает масляную плёнку со стенок
цилиндров, в результате двигатель работает тише и ровнее. Однако при
неправильной фильтрации топлива (изначально в 1 м3 газа содержится
около 3 г
золы и пыли) твёрдые частицы, попадая в двигатель, будут приводить к его
преждевременному износу. Поэтому важнейшие элементы газогенератора — это продуманные
системы фильтрации и охлаждения (по результатам экспериментов известно, что при
увеличении температуры газа с 20 до 70 °C
мощность ДВС падает на 25%).

Вопросы экологии

При сжигании веществ органического происхождения вредных выбросов будет немного
— в процессе работы двигателя будут получаться в основном углекислый газ и зола,
из которой можно делать удобрения. По результатам исследований, проводимых в
Европе, автомобили на дровах намного экологичнее традиционных транспортных
средств.

Многих также беспокоит вопрос вырубки лесов. Хочется заметить, что для
обеспечения ГГА топливом не обязательно вырубать лес. Приверженцы этой
технологии пользуются ветками и дровами от сухих деревьев, которых много в лесополосах
вдоль дорог. Кстати, производство нефтепродуктов тоже наносит большой вред
окружающей среде.

Кому подходит ГГА?

В первую очередь жителям глубинки, где моторное топливо сложно найти или
оно стоит слишком дорого. Однако в последнее время горожане, озабоченные
проблемами экологии, нередко переоборудуют свои авто в ГГА.

Например, житель Англии Колин Дэвисон с друзьями проехал по всей стране
(2575 км),
заправляя свой автомобиль отходами кофемашин. Маршрут был проложен между 37
кофейнями, в которых группа брала отработанный кофе, в результате чего её
путешествие было занесено в Книгу рекордов Гиннесса. Максимальная скорость составила
105 км/ч.
Швед Йохан Линель за 20 дней проехал всю Швецию (5420 км) на дровах. Расход древесины
составил 7 м3.
При этом скорость доходила до 150
км/ч.

Украинец Андрей Лагунов пошёл еще дальше — он разработал обучающий курс
«Авто на дровах своими руками», а также собрал много информации о
газогенераторах и их владельцах. Любой желающий, по словам Андрея, может
сделать газогенератор своими руками за несколько дней, потратив менее 50 долл.

Источник: Энерговектор

Использование древесины в качестве топлива для генератора! (Как построить газогенератор для древесины с демонстрацией): 5 шагов (с изображениями)

Просто небольшое примечание … Прошу прощения за то, что мои руки присутствуют на некоторых фотографиях. Я использовал фотографии, взятые из видеозаписи. Это, конечно, ничего не убирает, но я подумал, что стоит упомянуть. Двигаемся дальше!

Газификаторы работают с очень простыми процессами, поэтому их конструкция довольно гибкая. Основные части могут быть обозначены и объяснены в общих чертах, но при этом довольно легко передать идеи.Я начну объяснять от начала до конца.

Первая остановка? Хранение топлива! Идеально подходит простой загрузочный бункер с крутыми сторонами, превышающими угол естественного откоса, для топлива с самым высоким коэффициентом трения, которое вы можете использовать. Но это всего лишь металлический мусорный бак. Все, что хоть как-то направляет что-либо в дымовую трубу, было бы хорошо, ха-ха. Стройте его настолько большим, насколько хотите! В моем исследовании общее практическое правило состоит в том, что 20 фунтов древесины — это приблизительная энергия, эквивалентная 1 галлону бензина.Так что это будет определяющим фактором того, как долго вы сможете перерыв в дозаправке.

Жаровая труба — следующий шаг. Здесь топливо готовится к сжиганию в решетке шейкера. Тип газификатора, который я вам показываю сегодня, называется «газогенератором с нисходящим слоем». Это название связано с работой дымовой трубы. Воздух равномерно втягивается вниз через топливо в дымовой трубе, и, согласно информации, опубликованной FEMA об использовании газификаторов в 1989 году для аварийного использования, в топливе внутри него протекают четыре стадии реакций.Я сделаю ссылку на документ FEMA в конце этого руководства. По сути, это Библия о простых газификаторах, ха-ха.

Ступени работают сверху вниз (нисходящий поток).

Зона 1. Самая верхняя зона практически не задействована. Этот этап просто содержит неизрасходованное и непрореагировавшее топливо для подготовки к следующему.

Зона 2. Здесь начинается процесс пиролиза топлива. Проще говоря, пиролиз — это реакция разложения чего-либо на элементы под воздействием тепла.Летучие компоненты топлива здесь вступают в реакцию с кислородом и сжигаются для получения тепла для будущих реакций пиролиза. Весь доступный кислород должен быть потрачен при выходе из нижней части этой зоны.

Зона 3. В этой зоне горячие газы сгорания со стадии пиролиза реагируют с древесным углем, превращая диоксид углерода и водяной пар в монооксид углерода и водород.

Зона 4. Здесь останавливаются отработанная зола и углерод. Однако они по-прежнему играют важную роль в этом процессе.Действовать как буфер двумя способами. Он поглощает избыточное тепло и кислород и действует как область хранения древесного угля. То, что он является теплопоглощающим слоем перед решеткой шейкера, может помочь защитить ее от чрезмерных температур и преждевременного износа.

Вот где происходит большая часть волшебства !! Как вы понимаете, размер дымовой трубы является важным фактором при определении размера двигателя, на котором мы можем безопасно работать. Чем больше места в трубе, тем больше топлива может вступить в реакцию, тем больше тепла и газа вы можете произвести.В документе FEMA есть таблица с этими числами, которую я приведу ниже.

Внутренний диаметр дымовой трубы (дюймы) Минимальная длина (дюймы) Мощность двигателя (л.с.)
2 «- 16» — 5 л.с.

4 «- 16» — 15 л.с.

6 «- 16» — 30 л.с.

7 «- 18 «- 40 л.с.

8″ — 20 «- 50 л.с.

9″ — 22 «- 65 л.с.

10″ — 24 «- 80 л.с.

11″ — 26 «- 100»

12 «- 28» — 120 л.с.

13 «- 30» — 140 л.с.

14 «- 32» — 160 л.с.

Я знаю, что это много информации для некоторых сварных металлических труб, но я думаю, что вы, имея полное представление о том, что видите, можете довольно полезно.

После того, как топливо попадает в трубу, оно встречает подвешенный металлический контейнер с вентиляционными отверстиями, называемый «решеткой шейкера». Он действует как фильтр для удаления израсходованного топлива. Причина этого названия и необходимость его приостановки заключается в том, что оно должно быть способно воздействовать извне, чтобы отсеять излишки накопившейся золы. Самый простой способ сделать решетку, предложенный в документе FEMA, — это подвесить чашу из нержавеющей стали с просверленными в ней отверстиями от цепей. Это просто, но эффективно.Так я построил свой, и он неплохо держится. В интересах простоты я упустил из виду сборку вибратора в моем. Пропустить движущуюся деталь через боковую стенку реактора и держать ее закрытой для моего первого газогенератора было головной болью. Я просто просверлил большие отверстия в решетке шейкера, чтобы компенсировать это, и у меня не было никаких проблем. На самом деле нет правильного или неправильного способа просверлить отверстия в этой вещи. Я только что занялся ручной дрелью и сверлом 5/16 «.

Хорошо.теперь вы почти добываете газ! Теперь вам просто нужно воткнуть все это в герметичный корпус и вывести трубу сбоку! Мне очень понравился метод очистки от золы, который я использовал в своем. Для его удаления не требуются инструменты, просто удалите его, выгрузите, замените и продолжайте работу. Это также позволяет легко обслуживать детали внутри. Я показываю это на видео, и вам будет легче увидеть, чем вам попытаться представить себе через мое письменное описание.

Вот и реактор! К сожалению, мы пока не можем использовать газ из него.Он слишком грязный и полон смолы и прочего мусора, который нам нужно удалить, прежде чем закачивать его в двигатель. Вот где возникает необходимость в фильтрах.

Заменить дорогие дизельные генераторы или старые электрогенераторы

У вас есть старые электрогенераторы и вы хотите заменить или расширить их проверенной и надежной технологией последнего поколения?

Тогда вы попали в нужное место! Мы являемся экспертами в области газификации древесины с помощью газификаторов древесины, установленных во всем мире.У нас есть обширные ноу-хау в ремонте старых генераторов энергии или дизельных генераторов.

Электроэнергия и тепло из биомассы

Наши электростанции, работающие на биомассе, зарекомендовали себя во всем мире и вырабатывают электричество и тепло практически из любой натуральной древесины. Они чрезвычайно гибки в своем применении: вы можете объединить наши газификаторы древесины с существующей теплоэлектроцентралью, а также интегрировать газификатор древесины и ТЭЦ на древесине в существующий проект.

Переоборудование с газификацией древесины для повышения эффективности и экономии

Воспользуйтесь преимуществами надежности оборудования нашей технологии газификации и повысьте энергоэффективность для увеличения выработки электроэнергии и тепла с заменой мощности. Нашим теплоэлектростанциям в качестве источника энергии требуется только древесина. Это экологически чистое топливо, которое не только не наносит вреда окружающей среде и климату, но и укрепляет региональную экономику.

Посмотрите наш видеоролик о проектах модернизации существующих электростанций с газификацией древесины

Замена дорогих дизельных генераторов на металлических рудниках на электростанции, работающие на биомассе Re²

  • Исходная ситуация: металлические рудники без подключения к электросети
    Ограничения : Базовая нагрузка по электричеству составляет около 4.5 МВт, пиковая нагрузка ок. 7 МВт; предыдущее электроснабжение от ветряных, гидроэнергетических и дизельных агрегатов
  • Проблема: Более 50% общего спроса на электроэнергию вырабатывается дизельными генераторами; импорт дизельного топлива очень дорог и неэффективен; ветроэнергетика и гидроэнергетика зависят от погодных условий.
  • Планы проекта — Этап 1: Использование газификаторов древесины Re² (HKA 70) вместо дизельного генератора мощностью 1,2 МВт
    Шаг 2: Дальнейшая замена дизельной установки CAT мощностью 1,2 МВт на газификатор древесины от Re²

См. Другие ссылки на газификацию древесины.

Автономная сеть и замена дизель-генератора

400 сотрудников работают в три смены для работы на шахте, которая не подключена к коммунальной электросети. Для добычи цинка и золота постоянно требуется около 4,5 МВт электроэнергии, а в пиковые периоды потребляется до 7 МВт. На сегодняшний день большая часть электроэнергии вырабатывается пятью дизельными генераторами CAT. Генераторы неэффективны в эксплуатации, потому что импорт дизельного топлива очень дорог, сложен и не очень экологически безопасен.

С 2010 года ветряные электростанции покрывают до 5% потребностей шахт в энергии, хотя они сильно зависят от преобладающих погодных условий. Кроме того, есть три гидроэлектростанции, которые вырабатывают экологически чистую энергию.

Спрос на энергию значительно колеблется. Электроэнергия и тепло должны производиться независимо от погоды и экологически безопасным способом. Поэтому оператор шахты намерен полагаться на проверенную технологию газификации древесины Re² — ведущего производителя электростанций, работающих на биомассе.

Несколько дровяных газификационных установок заменяют дизельные генераторы электрической мощностью 1,2 МВт в двух фазах проекта. Несколько систем соединены в каскад и работают одновременно и независимо друг от друга. Они производят энергию по мере необходимости и очень гибки. Древесина из этой местности служит источником энергии, обеспечивая выгоду для региона.

Каскад газификаторов древесины предлагает преимущества в гибкости и с точки зрения обслуживания.

По сравнению с одной крупномасштабной установкой, несколько установок Re² предлагают преимущества в гибкости, а также с точки зрения обслуживания.Это может быть выполнено на месте, а также на серийно выпускаемых турбодвигателях с охладителем наддува, которые устанавливаются на мощных теплоэлектроцентралях Re² (не требуется дорогостоящий специалист). Доступность системы также обеспечивается во время работ по техническому обслуживанию и составляет более 90% на всем протяжении, обеспечивая надежное энергоснабжение.

Электростанции на биомассе от Re² чрезвычайно гибки в отношении топлива и могут работать с любой натуральной древесиной. С помощью запатентованной технологии энергия также может производиться экологически и экономично в отдаленных регионах, когда это необходимо.На данный момент большая часть электроэнергии на руднике вырабатывается дизельными генераторами CAT. Электростанции на биомассе от Re², вырабатывающие электричество и тепло из древесной щепы, являются отличным способом замены дизельных генераторов и выработки энергии на основе древесного газа по мере необходимости.

Объедините газификатор древесины Re² с большой теплоэлектроцентралью!

Более крупные блоки ТЭЦ с электрической мощностью от 500 кВт до 3 МВт могут также работать на древесном газе, как для запланированных проектов, так и в рамках модернизации.

Комплекты газификаторов GEK — ВСЕ Power Labs

[ПРИМЕЧАНИЕ. По состоянию на июнь 2017 года это устройство в настоящее время недоступно, пока мы модернизируем его, чтобы он соответствовал новому дизайну Power Pallet].

ALL Power Labs начала свою деятельность в 2008 году с продажи небольших комплектов газификаторов для энтузиастов DIY и университетских исследователей. Наше намерение состояло в том, чтобы предоставить комплект LEGO для газификации, чтобы зажечь новую работу и новый разговор в относительно спокойной области термического преобразования биомассы.В последующие годы мы были поражены интересом, который эти комплекты вызвали во всем мире, и последующим ускорением совместных исследований и обмена знаниями. В конечном итоге мы обнаружили, что система выработки электроэнергии на основе газификатора — та, которая действительно реализует свое ценностное предложение — требует интеграции компонентов и автоматизации высокого уровня, которые не могут обеспечить набор для самостоятельной сборки. Таким образом, в течение многих лет мы отказывались от постоянных запросов на эти комплекты, а вместо этого направили людей на наши полные системы выработки электроэнергии.Это не остановило ни запросов, ни желания / веры многих людей в то, что они могут построить систему самостоятельно. Поэтому после многих лет сопротивления мы разработали новый сценарий предложения более простого комплекта газификатора на основе нашего значительно улучшенного газогенератора v5, но с таким уровнем интеграции и автоматизации, который сохраняет его значимость для реального использования.

В мае 2015 года мы представили новую форму комплекта газификатора GEK (предупреждение: он может показаться несколько знакомым):

Технический паспорт газификатора GEK

Новый комплект газификатора GEK представляет собой полную систему производства газа: от подачи топлива до фильтра, все это контролируется нашей системой полной автоматизации и смешивания с Power Pallet.С другой стороны, новый комплект газификатора GEK представляет собой полный поддон Power Pallet без двигателя, генератора, регулятора двигателя и различных принадлежностей, связанных с двигателем. Новый комплект поставляется полностью собранным, сдвинутым и введенным в эксплуатацию, а не в виде сырых деталей, которые вам предстоит разгадывать.

Нет, мы еще не можем продавать газогенератор без автоматики. Подача топлива, управление решеткой с датчиком давления, шнек для удаления золы, контроль температуры крекинга гудрона, смешивание газа и воздуха и аварийные отключения — все это зависит от умных способностей автоматизации.Наши и другие попытки решить эту проблему с помощью простых таймеров и других средств ручного управления на самом деле не решают проблем, связанных с изменчивостью газификатора и автономной работой. Однако, несмотря на то, что наша полная система автоматизации остается нетронутой, эти системы остаются законченными, интегрированными и позволяют автономно работать.

Оставшаяся интеграция с двигателем / генератором возможна. Это нетривиально, но это выполнимо вашим типичным энтузиастом вращающегося оборудования. Вам нужно будет настроить регулятор генератора, направить выхлоп двигателя обратно через пиролизер для пиролиза с внешним приводом в конструкции GEK TOTTI и пропустить различные провода и приборы от двигателя обратно к PCU автоматизации.PCU может запускать / запускать и управлять двигателем, как на Power Pallet, но вам нужно будет выполнить проводку, специфичную для вашего двигателя.

Мы ожидаем, что эта новая форма газогенератора / силового поддона GEK будет интересна самодельным строителям, исследователям университетов и производителям комплектного оборудования. В частности, производители OEM годами просили нас поставлять все, кроме генераторной установки, поскольку они хотели оптимизировать работу с местным двигателем и предложением genhead. Общий дизайн менялся слишком быстро, чтобы делать это раньше.Теперь он стабилен и достаточно зрел, чтобы поддерживать эти типы сценариев использования OEM

Система поставляется полностью укомплектованной и готовой к работе после небольшой переустановки бункера и факела. Каждая система включает реактор GEK v5.0, бункер, шнек, циклон, систему фильтрации, факел с предварительным смешиванием, систему смешивания газа и воздуха с датчиком O2, шнек для удаления золы и систему автоматизации PCU. Для получения дополнительной информации см. Техническое описание комплекта газификатора GEK.

Чтобы разместить заказ или узнать больше, свяжитесь с нашим отделом продаж.Мы ожидаем доставки в течение 60-90 дней с момента заказа.


Кстати, вот как выглядел GEK v1 в 2008 году:

И вот то, во что превратилась GEKTOTTI в конце производства в 2013 году с его крутыми создателями:

В конечном итоге мы продали более 300 таких комплектов, прежде чем их затмила наша работа над Power Pallet. Мы прошли долгий путь, детка!

Детали конструкции генератора древесного газа

Обновление Примечание: 11 января 2009 г.

Если вы заинтересованы в создании газогенератора, обратите внимание, что, по нашему мнению, лучший способ начать работу — это набор для экспериментов с газификатором, произведенный Джимом Мейсоном из Allpowerlabs.Он содержит множество инновационных функций, и это устройство, с которым мы сейчас работаем. Информация о том, что мы делаем с нашим GEK, начинается с 68 тома нашего информационного бюллетеня / блога.


Детали конструкции генератора древесного газа

вместе с обзором реакций
, участвующих на каждой стадии процесса


& nbsp

Конструкция, которую мы создаем, называется «генератором с пониженной тягой», и с точки зрения конструкции ее можно описать как резервуар внутри резервуара в резервуаре.Ключевая цель на этом этапе проекта — задействовать как можно больше материалов «с полки» или, точнее, «из кучи металлолома». Нет ничего плохого в том, чтобы создавать компоненты с нуля, если вам нужно, но никакая конструкция такого уровня сложности, скорее всего, не даст оптимальной производительности в исходной форме, поэтому первая цель — получить начальное устройство и работать так быстро и дешево. , по возможности, а затем «кайдзен» оттуда.

[ кайдзен — достижение совершенства дизайна за счет небольших, постепенных улучшений]

Для внешней оболочки мы используем бочку с открытым верхом на 55 галлонов.Внутри него находится еще один барабан на 55 галлонов, который был разрезан, сжат и скреплен вместе, чтобы создать внутреннюю стенку, которая примерно на два дюйма меньше в диаметре, чем внешний барабан.

Внутри генератора расположен теплообменник, в котором тепло выхлопных газов вырабатывает пиролитический газ из древесной стружки. Одна из целей проекта состоит в том, чтобы удерживать большую часть тепла внутри генератора, управляя начальной пиролитической фазой процесса преобразования, вместо того, чтобы нагревать окружающую среду вокруг генератора.[ пиролиз — для разложения соединения путем его нагревания в анаэробной атмосфере.]

[ анаэробный — имеющий отношение к бескислородной среде.]

Для того чтобы сохранить тепло реакции в ядре gassifier, пространство между двумя барабанами будет заполнено огнеупорной изоляцией.

& nbsp

Самый внутренний барабан — это барабан гражданской обороны на 40 галлонов.Это часть резервуара, которая заполняется древесной стружкой. Этот резервуар образует «верхнюю зону» генератора — место пиролиза исходной древесины.

То, что вы видите на картинке, — это крышка бочки с открытым верхом на 55 галлонов, в которой было вырезано круглое отверстие, размер которого идеально подходит для внутреннего бочки на 40 галлонов. По завершении этот внутренний реактор будет расположен внутри изолированной бочки емкостью 55 галлонов, а стандартный зажим бочки обеспечит окончательное уплотнение.

Пиролитический газ представляет собой смесь органических соединений, включая метан, метанол, этан, этанол, метилэтиловый эфир и множество смол и более тяжелых соединений, образующихся при расщеплении сахаров, целлюлозы и лигнинов в древесине под действием тепла.Этот газ будет гореть, но это топливо низкого качества, которое быстро забьет ваши трубопроводы, поскольку вода и смолы в газе конденсируются.

Ужасный беспорядок. Очень неудовлетворительно. Поэтому в генераторе происходят еще две операции: оксидация и редукция.

Первая стадия процесса включает варку древесины для производства пиролитического газа, процесс, который начинается при температуре около 451 ° F и почти завершается при температуре около 800 ° F. Остается уголь.В большинстве автомобильных систем на древесном газе, использовавшихся во время Второй мировой войны, использовался древесный уголь вместо необработанной древесины, так что они могли пропускать пиролитическую фазу и минимизировать размер генератора. Чтобы сделать все это в одном генераторе, требуется более крупный и сложный блок, и если у вас есть место, тогда можно пойти дальше, так как вы получите больше энергии из фунта древесины, если будете сжигать и древесный уголь, и древесный уголь. пиролитические газы.

К тому времени, когда древесина спускается на дно 40-галлонной бочки, она превращается в древесный уголь; вот тогда все действительно начинает накаляться.Секция генератора непосредственно под пиролитической камерой является очагом окисления. Здесь часть древесного угля сжигается для выработки тепла, которое запускает процесс.

кольцо пода в перевернутом виде
& nbsp

Древесный уголь горит на воздухе при температуре от 2000 ° F до 3000 ° F, выделяя углекислый газ [C02] и окись углерода [CO] в зависимости от количества доступного кислорода.[ воздух — 20% активная смесь кислорода и инертных газов. Ключевым моментом здесь является то, что для нагрева газа от комнатной температуры до температуры сгорания требуется энергия. Если вы используете воздух в качестве источника кислорода, вам нужно нагреть четыре фунта инертного газа (то есть азота), чтобы «сжечь» фунт кислорода. Образовавшийся древесный газ будет разбавлен инертным азотом и, соответственно, будет иметь более низкое энергосодержание, чем если бы в качестве окислителя использовался чистый кислород.]

Именно здесь, в этой средней зоне, зоне очага, мы будем генерировать тепло, необходимое для запуска химии; пиролиз вверху, а затем сокращение внизу.

[ эндотермический — химическая реакция, для протекания которой требуется постоянный подвод тепла.]

[ экзотермический — химическая реакция, протекающая с выделением тепла.]

Для этой начальной модели я построил очаг из обода шины для дома на колесах.Оказалось, что внешний обод был чуть больше внутренней кромки 40-галлонного барабана для компакт-дисков. Все, что потребовалось, чтобы закрепить его на месте, — это несколько металлических винтов, чтобы удерживать его по центру.

Как упоминалось ранее, этот генератор древесного газа имеет конструкцию с нисходящей тягой. В генератор не поступает воздух; скорее, воздух втягивается через генератор за счет вакуума, создаваемого двигателем транспортного средства.

По сути, двигатель внутреннего сгорания работает как вакуумный насос. Когда поршни опускаются, они создают вакуум, который, в свою очередь, втягивает воздух и топливо в цилиндры через впускной коллектор двигателя.При работе на древесном газе двигатель всасывает топливный газ, смесь h3, CO и инертного N2 из генератора во впускной коллектор, а оттуда в двигатель.

Поскольку двигатель создает разрежение в генераторе, воздух и перегретый пар втягиваются в подовое кольцо через 2-дюймовую муфту, приваренную к боковой стороне пода. Она подается в распределительную камеру, созданную приваркой 5-дюймовой полосы стальной пластины к обод; эта камера распределяет паровоздушную смесь вокруг подового кольца.Подовое кольцо имеет дюжину отверстий диаметром 3/8 дюйма, просверленных в нижней части камеры, через которые поступающий газ всасывается в горящий уголь.

В этот момент первичная экзотермическая реакция выглядит так:
1) C + O2 => CO2 + Тепло

Кроме того, происходят две экзотермические вторичные реакции:

2) 2 C + O2 => 2 CO + Нагрев
частичное окисление раскаленного угля и
3) CXh3X + O2 => 2 CO + h3O + Нагрейте частичное окисление пиролитического газа.Как отмечалось выше, каждая из реакций, происходящих в зоне окисления, выделяет много тепла, которое превращает оставшийся древесный уголь в так называемый «светящийся уголь».

Следующая остановка — зона восстановления — место, где варочный котел творит чудеса.


чаша сокращения, и стопорное кольцо
& nbsp

Напомним, необработанная древесина нагревается в первой, самой верхней камере до точки, в которой выделяются летучие пиролитические газы, и древесина превращается в древесный уголь.Во вторую камеру, зону очага, был введен воздух, и часть древесного угля была сожжена, тем самым высвободив много тепла и превратив оставшийся древесный уголь в так называемый «тлеющий уголь». Это светящийся уголь, который делает работу в зоне восстановления.

Когда раскаленный уголь падает через зону очага, он улавливается в чаше из нержавеющей стали; т.е. редукционный стакан. Чаша сделана из миксерной чаши из нержавеющей стали, которая имеет множество отверстий, вроде очень крупного сита, и удерживается на месте под кольцом пода металлическим кольцом, показанным над чашей.Кольцо было припаяно к дну очага, но чаша просто свободно сидит в кольце, так что его можно периодически механически встряхивать, чтобы зола могла пройти и собраться на дне генератора.

Когда газы протягиваются через слой светящегося углерода, происходят эндотермические реакции:

1) C + h3O + Heat => CO + h3

Эта реакция известна как реакция «водяного газа», и это был основной способ производства газа для промышленного и бытового использования столетие назад.Позже строительство сети трубопроводов позволило транспортировать «природный газ», смесь метана и углекислого газа, по всей стране, и заводы по производству водяного газа были остановлены в пользу более дешевого источника энергии.

Светящийся уголь настолько агрессивен, что отрывает атом кислорода от молекулы воды, оставляя вам два горючих газа, окись углерода и водород. Эти два газа — то, что будет питать двигатель и продвигать нас по дороге.


Показанный сердечник газогенератора лежащий на боку с установленным редукционным стаканом и стопорным кольцом
& nbsp

То же самое происходит с любым кислородсодержащим углеродным соединением, образующимся на стадии пиролиза, такими соединениями, как метанол или метилэтиловый эфир.Это хорошо, но в этом нет необходимости, поскольку эти соединения все равно сгорели бы в двигателе. Что очень важно, так это то, что более сложные кислородсодержащие соединения, называемые «смолами», также разлагаются на горючие газы во время этой фазы процесса. Это важно, потому что эти соединения будут конденсироваться задолго до того, как попадут в двигатель, попутно склеивая работы.

Хотя наша цель в этом проекте — превратить древесину в жизнеспособное моторное топливо, генераторы древесного газа также являются очень эффективным способом получения регулируемого тепла в стационарных установках.Превратив твердую древесину в горючий газ в генераторе, а затем направив этот газ по трубопроводу к месту использования, например, в печи, процесс можно сделать гораздо более контролируемым и эффективным, чем если бы вы просто попытались сжечь такое же количество древесины. в дровяной печи.

Кроме того, если бы вы использовали газ для целей сгорания, не было бы необходимости охлаждать газ, как мы должны делать, чтобы эффективно заправлять двигатель внутреннего сгорания (подробнее об этом позже). Вместо этого летучие смолы можно было просто направить в горелку и сжечь.Одной из основных причин использования конструкции газогенератора с нисходящим потоком является необходимость разложить эти смолы до того, как они покинут генератор древесного газа и начнут засорять остальную часть системы.


вид вниз на сердцевину газогенератора
& nbsp


2) C + CO2 + тепло => 2CO

Примечателен агрессивный характер светящегося угля.Он настолько голоден, что даже заставит молекулу углекислого газа «делиться» своим кислородом, тем самым превращая твердый атом углерода и молекулу инертного газа в две молекулы горючего газа. Довольно изящный трюк.

Как только газогенератор нагревается до температуры, выходят только горючие неконденсирующиеся газы, такие как окись углерода и водород, пар и немного золы.

С этого момента речь идет о теплообменниках, предназначенных для сохранения тепла внутри реактора, контуре обратной связи по пару, чтобы поддерживать реакцию на уровне около 2300 F °, фильтрации, чтобы не допустить попадания золы в двигатель, и охлаждении для увеличения плотности газ доставлен в двигатель.ОБНОВЛЕНИЕ — осень 2008 г.


Записки с наветренной стороны — Указатель — Vol. 63


Может ли этот малоизвестный генератор биомассы начать энергетическую революцию?

Возможно, это самая важная переносная электростанция, о которой вы никогда не слышали. Он называется «Power Pallet» и по сути представляет собой комбинированный завод по переработке биомассы и генератор, который помещается на одном поддоне и может выдавать до 20 киловатт электроэнергии.

Я наткнулся на блестящую, но скромную штуковину, которая выглядит так…. ну, как миниатюрный нефтеперерабатывающий завод, прикрепленный к миниатюрной электростанции, когда он бродил по задней части ярмарки Bay Area Maker Faire, где также были выставлены многие из причудливых или смутно стимпанковых промышленных произведений искусства Burning Man.

Это была подходящая обстановка, учитывая, что создатель Power Pallet Джим Мейсон — художник из Беркли, Калифорния, который начал разработку портативного гибкого источника питания после того, как город отключил электричество в коллективном рабочем пространстве, которое он создал для художников, работающих в больших масштабах. проекты для Burning Man.Одной из первых идей, к которой он обратился в поисках альтернативного источника энергии, была газификация.

«Газификация увлекательна тем, что это процесс разделения огня на составляющие его компоненты и возможность контролировать их», — сказал Мейсон недавно Fast Company. «Это следует рассматривать как операционную систему огня».

Спустя более десяти лет компания Мейсона All Power Labs теперь насчитывает 35 штатных сотрудников и только что развернула пятую версию Power Pallet после установки сотен устройств в развивающихся странах и в качестве исследовательского инструмента в университетах. среди других мест.

В условиях нехватки дизельного топлива в Либерии были установлены Power Pallets

По сути, Power Pallet работает за счет сжигания доступной биомассы, но до того, как топливо полностью сгорит, образующиеся легковоспламеняющиеся газы, такие как водород и окись углерода, уносятся, чтобы использовать вместо этого в качестве топлива в двигателе General Motors, который работает как электрический генератор. Скорлупа грецких орехов — один из лучших источников топлива из биомассы, требующий минимального количества операций и технического обслуживания с помощью Power Pallet.На втором месте — древесная щепа и скорлупа кокосовых орехов, а наиболее трудными в использовании являются кукурузные початки или скорлупа пальмовых ядер.

По оценке компании, 10 кг (20 фунтов) биомассы, преобразованной в электричество с помощью Power Pallet, примерно эквивалентны мощности сжигания 4 л (1 галлон США) дизельного топлива в генераторе, но сырье для биомассы может стоить очень мало как одна треть цены дизельного топлива за киловатт-час произведенного.

Конечная цель Power Pallet — создать законченное, портативное и компактное решение для выработки электроэнергии, которым может легко управлять любой человек из коробки (или, возможно, без поддона) без какой-либо подготовки.Последняя версия включает в себя обновления, такие как автоматическая обработка золы, по сути, добавление камеры для удаления золы, которую легко опорожнять один раз в день, чтобы убедиться, что вещи не забиваются.

Согласно последним расценкам на веб-сайте компании, Power Pallet 20 стоит около 30 000 долларов США или чуть менее 40 000 долларов США за блок с пакетом привязки к сети, который позволяет покрывать любой дефицит электроэнергии с помощью основной сети.

Вы можете посмотреть обзор последней модели на видео ниже.

Источник: All Power Labs

v5.0 Power Pallet Walk-Around с Остином Лю — ЧАСТЬ 1

Газификация древесины — эффективный способ сжигания древесины

Котел с газификацией древесины. Древесина сжигается в топке (вверху), а газы движутся вниз и сжигаются при температуре от 1800 до 2000 F в керамической камере внизу.Затем горячие газы проходят через жаротрубный теплообменник для передачи тепла воде, хранящейся в большом резервуаре. Температура дымовых газов обычно ниже 350 F, креозот отсутствует. Древесина должна быть сухой (желательно двухлетней). Из Руководства по установке, эксплуатации и техническому обслуживанию Eko-Vimar Orlanski, https://www.newhorizoncorp.com/PDF/ekomanual.pdf; используется с разрешения.
Использование опоры для резки позволяет быстро и эффективно раскряжевать множество бревен и веток небольшого диаметра одновременно.Этот метод рекомендуется только тем, кто обучен технике безопасности с бензопилой и имеет опыт работы с бензопилой. Будьте предельно осторожны, обрезая маленькие ветки, и кладите самые большие сверху, так как маленькие кусочки могут вылететь в сторону пилорама. Держите пилу на повышенной скорости, так как медленная цепь может зацепиться за мелкую древесину и толкнуть ее в сторону пилорама. Фотографии любезно предоставлены автором

Бен Хоффман

Правильно высушенная и обожженная древесина — отличное зеленое топливо для отопления в сельской местности.Поскольку свежепиленная древесина может на 60 процентов состоять из воды, ключом к минимизации резки, раскалывания и штабелирования древесины является ее высыхание в течение как минимум года. Если вы этого не сделаете, около 40 процентов вашей древесины будет сжигаться только для того, чтобы отводить воду — никакого нагрева. Большинство печей работают с КПД от 40 до 60 процентов, дровяные котлы, работающие на открытом воздухе, обычно получают от 30 до 50 процентов, а газогенераторы древесины — от 80 до 92 процентов, но главное — это сухая древесина. Через год влажность древесины может составить от 20 до 35 процентов; через два года от 10 до 20 процентов.Мой газификатор требует влажности от 15 до 25 процентов для максимальной эффективности, поэтому я сушу древесину в течение двух лет и недавно завершил установку солнечной сушилки для древесины, чтобы попытаться сократить время сушки.

При газификации древесина сначала сжигается в обычной топке, затем газы направляются в керамическую камеру сгорания, где температура достигает 1800–2000 F. Все газы и смолы сжигаются, дым не выходит из дымохода и дымоход остается чистым. Несмотря на высокие температуры в камере газификации, к тому времени, когда газы проходят через жаротрубный теплообменник котла, температура дымовых газов может достигать 350 F.У меня температура дымовых газов обычно ниже 250, что указывает на эффективность теплообменника с дымогарными трубами. Если древесина слишком влажная, огонь охлаждается, и из дымохода выходит белый пар. Поскольку котлы с газификацией древесины серийно производятся в Европе, они намного дешевле отечественных моделей. Моя изготовлена ​​в Польше. Теперь я обогреваю свой дом площадью 1400 квадратных футов, подвал и бытовую воду с осени до поздней весны примерно на 3-1 / 2 шнурах. Перед установкой котла мой дом был площадью 1000 квадратных футов, и с дровяной печью для отопления я сжег 3-1 / 2 шнура плюс от 150 до 200 галлонов масла для горячего водоснабжения.

В холодную погоду я разводил один костер в день и держу его около восьми часов. Ключ к эффективности — сухая древесина и быстрое горячее горение. Мой небольшой котел на 85 000 БТЕ нагревает воду, хранящуюся в пропановом баке на 500 галлонов, и эта вода циркулирует по запросу для обогрева жилых помещений и бытовой воды. С годичной древесиной мой бак достиг максимальной температуры 170 градусов, но с действительно сухой древесиной она достигает 180, что значительно увеличивает БТЕ. Один пожар хорош в течение дня зимой в штате Мэн, но продолжался два-три дня мягкой осенью 2015 года.Когда цены на нефть упали, летом я сжигал нефть, а не дрова; один пожар может обеспечить горячее водоснабжение на неделю, но большая часть тепла в резервуаре будет потеряна в подвал. Большая семья, принимающая много душа и много стирающая, скорее всего, выиграет от еженедельного ожога.

Древесина — идеальное топливо для отопления сельской местности в штате Мэн, особенно если у вас есть лесной участок. Заготовка дров — это возможность улучшить лес за счет удаления мертвых, умирающих, больных и плохо сформированных деревьев, позволяя остаточным деревьям расти быстрее, производить больше кислорода и использовать больше парниковых газов CO2.Если вы садовод, древесная зола добавляет в почву кальций, калий, другие питательные вещества и биоуглерод (но применяйте только после и в соответствии с рекомендациями теста почвы, поскольку древесная зола может быстро и чрезмерно повысить pH почвы). С точки зрения энергии покупать древесину у местного поставщика намного лучше, чем покупать пеллеты издалека, и это сводит к минимуму потребление моторного топлива. Он также обеспечивает местную занятость и сохраняет деньги в местной экономике.

Я вырезал примерно половину своей древесины из крошечного лесного массива и использую верхушки и ветки примерно 1-1 / 2 дюйма в диаметре для кухонной плиты.Ветви и дерево менее 4 дюймов эффективно раскряжевываются в «стойке для резки», сделанной несколько лет назад одним другом.

древесного газа в финском автомобилестроении во время Второй мировой войны на JSTOR

Abstract

30 ноября 1939 года Советский Союз атаковал Финляндию из артиллерии в нескольких точках вдоль приграничной границы, а также бомбил с воздуха города Вийпури и Хельсинки. Нейтральная Финляндия была плохо подготовлена ​​к авиаударам и современному моторизованному блицкригу в целом.Многочисленные финны, в том числе премьер-министр А.К. Каяндер считал полномасштабную войну маловероятной. Тем не менее, страна подготовилась к случаю кризиса, но довольно похожего на тот, который имел место во время Первой мировой войны, когда Финляндия не была полем битвы. Кроме того, акцент при подготовке делался на слабых местах предыдущей кризисной экономики: поставках продуктов питания и топлива, карточной системе. В этой статье рассматривается, как Финляндия реализовывала свой план по переходу от ископаемого топлива к местной энергии в гражданском автомобилестроении во время Второй мировой войны.В межвоенный период оценка различных альтернативных источников энергии для бензина привела к решению использовать генераторы древесного газа во всех моторизованных транспортных средствах, от автомобилей до лодок, в случае возникновения чрезвычайной ситуации. Были исследованы и апробированы различные зарубежные изобретения в этой области. Планировалось начать отечественное производство газогенераторов. Переход на газовые генераторы занял более двух лет, но в конце концов все используемые гражданские моторизованные автомобили работали на древесном газе. Движение продолжалось по дорогам и водотокам, хотя акцент на транспорте был перенесен на железные дороги, которые полагались на паровозы и их твердое топливо.Переключение энергосистемы за довольно короткий промежуток времени было удивительным достижением для страны, где нет автомобильной промышленности. Тем не менее, в новой системе было множество, но ожидаемых проблем, таких как недостаточный доступ к сухим рубленым березовым дровам, снижение мощности двигателя транспортных средств, работающих на древесном газе, и транспортных средств, требующих большего обслуживания, чем при использовании жидкого ископаемого топлива. Дополнительная проблема непредвиденной серьезности заключалась в масштабах отравлений газом.

Информация о журнале

ICON, основанный в 1995 году, — это журнал ICOHTEC, посвященный истории технологий.ICON, публикуемый ежегодно, включает статьи, обзорные эссе и рецензии на книги по всем аспектам и периодам технологической истории как членами, так и не членами. Он поощряет исследования транснационального характера, сфокусированные на глобальных технологиях, и стремится поощрять сотрудничество между учеными через национальные или политические границы.

Информация для издателя

ICOHTEC была основана в Париже в 1968 году, когда горечь разделила народы Восточного и Западного мира.Намерение состояло в том, чтобы предоставить форум ученых, занимающихся историей технологий, по обе стороны железного занавеса.

.